Study on Identification and Projection of Food Commodity Price Cycles during the COVID-19 Pandemic Period as a Study of Supervision Aspects of Food Product Marketing in Bangka Belitung
Society Volume 10 Issue 1#2022
PDF (English)
PDF (Bahasa Indonesia)

Keywords

Food Security Issues;
Pangkalpinang City;
Time Series;
VAR/VECM Models

View Counter


  • Abstract viewed - 181 times
  • PDF (English) downloaded - 66 times
  • PDF (Bahasa Indonesia) downloaded - 44 times

Search in:

| |

How to Cite

Akbar, M., & Fahria, I. (2022). Study on Identification and Projection of Food Commodity Price Cycles during the COVID-19 Pandemic Period as a Study of Supervision Aspects of Food Product Marketing in Bangka Belitung. Society, 10(1), 45-64. https://doi.org/10.33019/society.v10i1.322

Funding data

  • Universitas Bangka Belitung
    Grant numbers Research Program for Lecturers at the University Level based on the Decree of the Rector of the Universitas Bangka Belitung No 18.29/UN50/PP/III/2021

Abstract

This study examined the projected price of food marketing in the Province of the Bangka Belitung Islands as a step in deepening the issue of food security due to the COVID-19 pandemic. The COVID-19 pandemic in the Province of the Bangka Belitung Islands had a significant impact on the issue of food security. This was caused by the deficit of several strategic food commodities and caused the prices of this food to increase quite high compared to other provinces in Indonesia, such as several provinces in Sumatra and Java. Therefore, local governments as policymakers have a high enough interest in maintaining prices for strategic commodities, especially food. This study intends to compare the volatility of food prices before and after the COVID-19 pandemic. The data used is time-series data on weekly food prices in a traditional Pangkalpinang City market for September 2018 to February 2021. The data analysis technique uses the Vector Autoregression (VAR) method or Vector Error Correction Model (VECM) with the help of statistical software EViews. The results of this study indicate that several important commodities that support community life are predicted to increase significantly, including rice, chicken meat, and chicken eggs. The three food commodities that experienced an increase had a fairly high fluctuation. Beef and red chilies show declining projections in the 8-week forecast period. Meanwhile, cooking oil prices, granulated sugar, shallots, and garlic are still stable.

DOI : https://doi.org/10.33019/society.v10i1.322
PDF (English)
PDF (Bahasa Indonesia)

References

Abbott, P. C., Hurt, C., & Tyner, W. E. (2009). What’s Driving Food Prices? March 2009 Update. Farm Foundation. https://doi.org/10.22004/ag.econ.48495

Ariefianto, M. D. (2012). Ekonometrika: Esensi dan Aplikasi dengan Menggunakan Eviews. Jakarta, Indonesia: Erlangga.

Asmarantaka, R. W., & Oktaviani, R. (2009). Gejolak Harga Komoditas Pangan Internasional: Dampak dan Implikasi Kebijakan Bagi Ketahanan Pangan Indonesia. Jurnal Agribisnis Dan Ekonomi Pertanian, 3(1), 36-49. Retrieved from https://journal.ipb.ac.id/index.php/jurnalagribisnis/article/view/17059

Awartani, B., Aktham, M., & Cherif, G. (2016). The connectedness between crude oil and financial markets: Evidence from implied volatility indices. Journal of Commodity Markets, 4(1), 56–69. https://doi.org/10.1016/j.jcomm.2016.11.002

Batten, J. A., Ciner, C., & Lucey, B. M. (2014). Which precious metals spill over on which, when and why? Some evidence. Applied Economics Letters, 22(6), 466–473. https://doi.org/10.1080/13504851.2014.950789

Beckmann, J., Belke, A., & Czudaj, R. (2014). Does global liquidity drive commodity prices? Journal of Banking & Finance, 48, 224–234. https://doi.org/10.1016/j.jbankfin.2014.04.007

Cashin, P., & McDermott, C. J. (2002). The Long-Run Behavior of Commodity Prices: Small Trends and Big Variability. IMF Staff Papers, 49(2), 175–199. http://www.jstor.org/stable/3872481

Chevallier, J., & Ielpo, F. (2013). Volatility spillovers in commodity markets. Applied Economics Letters, 20(13), 1211–1227. https://doi.org/10.1080/13504851.2013.799748

Creti, A., Joëts, M., & Mignon, V. (2013). On the links between stock and commodity markets’ volatility. Energy Economics, 37, 16–28. https://doi.org/10.1016/j.eneco.2013.01.005

Deaton, A., & Muellbauer, J. (1980). Analmost ideal demand system. The American Economic Review, 70, 312–326. Retrieved from https://www.aeaweb.org/aer/top20/70.3.312-326.pdf

Dekasari, D. A. (2018). Pemberdayaan Petani dalam Meningkatkan Ketahanan Pangan di Desa Sambiroto Kecamatan Padas Kabupaten Ngawi. Jurnal Analisa Sosiologi, 5(1). https://doi.org/10.20961/jas.v5i1.18106

Direktorat Jenderal Perikanan Tangkap. (2003). Strategi Kebijakan Pemenuhan Protein Ikan dalam Mendukung Ketahanan Pangan Nasional. Jakarta, Indonesia: Departemen Kelautan dan Perikanan.

Enders, W. (2014). Applied Econometric Time Series (Wiley Series in Probability and Statistics) (4th ed.). Wiley.

Firdaus, M. (2011). Aplikasi ekonometrika untuk data panel dan time series. Bogor, Indonesia: IPB Press.

Gardebroek, C., Hernandez, M. A., & Robles, M. (2015). Market interdependence and volatility transmission among major crops. Agricultural Economics, 47(2), 141–155. https://doi.org/10.1111/agec.12184

Gilbert, C. L. (2010). How to Understand High Food Prices. Journal of Agricultural Economics, 61(2), 398–425. https://doi.org/10.1111/j.1477-9552.2010.00248.x

Hamadi, H., Bassil, C., & Nehme, T. (2017). News surprises and volatility spillover among agricultural commodities: The case of corn, wheat, soybean and soybean oil. Research in International Business and Finance, 41, 148–157. https://doi.org/10.1016/j.ribaf.2017.04.006

Hariyadi, R. D., Hardinsyah, P., Hariyadi, N., Andarwulan, N. S., Palupi, E., Syamsir & Prangdimurti, E. (2003). Kebijakan dan Keragaan Riset Diversifikasi Pangan Pokok di Indonesia. Kerja Sama Kementerian Riset dan Teknologi dengan Pusat Kajian Makanan Tradisional Institut Pertanian Bogor.

Harvey, M., & Pilgrim, S. (2011). The new competition for land: Food, energy, and climate change. Food Policy, 36, S40–S51. https://doi.org/10.1016/j.foodpol.2010.11.009

Juanda, B. & Junaidi, J. (2012). Ekonometrika Deret Waktu: Teori & Aplikasi. Bogor, Indonesia: IPB Press.

Kang, S. H., McIver, R., & Yoon, S. M. (2017). Dynamic spillover effects among crude oil, precious metal, and agricultural commodity futures markets. Energy Economics, 62, 19–32. https://doi.org/10.1016/j.eneco.2016.12.011

Magkonis, G. (2017). Dynamic Spillover Effects across Petroleum Spot and Futures Volatilities, Trading Volume and Open Interest. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2973743

Nicholson, W. (1999). Teori Ekonomi Mikro Buku 2. Tangerang Selatan, Indonesia: Binarupa Aksara.

Republik Indonesia. (2002). Peraturan Pemerintah Republik Indonesia Nomor 68 Tahun 2002 Tentang Ketahanan Pangan. Lembaran Negara Republik Indonesia Tahun 2002 Nomor 142. Jakarta: Sekretariat Negara Republik Indonesia.

Roache, S. K. (2010). What Explains the Rise in Food Price Volatility? SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1617028

Serra, T., Zilberman, D., & Gil, J. (2010). Price volatility in ethanol markets. European Review of Agricultural Economics, 38(2), 259–280. https://doi.org/10.1093/erae/jbq046

Setiawan, A. F., & Hadianto, A. (2014). Fluktuasi Harga Komoditas Pangan dan Dampaknya Terhadap Inflasi di Provinsi Banten. Journal of Agriculture, Resource and Environmental Economics, 1(2), 81–97. https://doi.org/10.29244/jaree.v1i2.11804

Śmiech, S., Papież, M., Fijorek, K., & Dąbrowski, M. A. (2019). What drives food price volatility? Evidence based on a generalized VAR approach applied to the food, financial and energy markets. Economics, 13(1). https://doi.org/10.5018/economics-ejournal.ja.2019-14

Trujillo-Barrera, A., Mallory, M. L., Garcia, P. (2012). Volatility Spillovers in U.S. Crude Oil, Ethanol, and Corn Futures Markets. Journal of Agricultural and Resource Economics, 37(2), 247–262. http://doi.org/10.22004/ag.econ.134275

Zhang, Z., Lohr, L., Escalante, C., & Wetzstein, M. (2009). Ethanol, Corn, and Soybean Price Relations in a Volatile Vehicle-Fuels Market. Energies, 2(2), 320–339. https://doi.org/10.3390/en20200320

Copyright (c) 2022 Owned by the Author(s), published by Society

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Downloads

Download data is not yet available.